Source code for medmodels.treatment_effect.report
"""This module contains functions to generate reports of the treatment effect class."""
from __future__ import annotations
from typing import TYPE_CHECKING, Literal, TypedDict
if TYPE_CHECKING:
from medmodels.medrecord.medrecord import MedRecord
from medmodels.medrecord.types import MedRecordAttribute
from medmodels.treatment_effect.treatment_effect import TreatmentEffect
[docs]
class FullReport(TypedDict):
"""A dictionary containing the results of all estimation methods."""
relative_risk: float
odds_ratio: float
confounding_bias: float
absolute_risk_reduction: float
number_needed_to_treat: float
hazard_ratio: float
[docs]
class ContinuousReport(TypedDict):
"""A dictionary containing the results of continuous treatment effect estimators."""
average_treatment_effect: float
cohens_d: float
hedges_g: float
[docs]
class Report:
"""Class to generate reports of the treatment effect class."""
_treatment_effect: TreatmentEffect
def __init__(self, treatment_effect: TreatmentEffect) -> None:
"""Initializes the Report class.
Args:
treatment_effect (TreatmentEffect): An instance of the TreatmentEffect
class.
"""
self._treatment_effect = treatment_effect
[docs]
def full_report(self, medrecord: MedRecord) -> FullReport:
"""Generates a full report of the treatment effect estimation.
Args:
medrecord (MedRecord): An instance of the MedRecord class containing medical
data.
Returns:
FullReport: A dictionary containing the results of all estimation
methods: relative risk, odds ratio, confounding bias, absolute risk
reduction, number needed to treat, and hazard ratio.
"""
return {
"relative_risk": self._treatment_effect.estimate.relative_risk(medrecord),
"odds_ratio": self._treatment_effect.estimate.odds_ratio(medrecord),
"confounding_bias": self._treatment_effect.estimate.confounding_bias(
medrecord
),
"absolute_risk_reduction": self._treatment_effect.estimate.absolute_risk_reduction(
medrecord
),
"number_needed_to_treat": self._treatment_effect.estimate.number_needed_to_treat(
medrecord
),
"hazard_ratio": self._treatment_effect.estimate.hazard_ratio(medrecord),
}
[docs]
def continuous_estimators_report(
self,
medrecord: MedRecord,
outcome_variable: MedRecordAttribute,
reference: Literal["first", "last"] = "last",
) -> ContinuousReport:
"""Generates a report of continuous treatment effect estimators.
Args:
medrecord (MedRecord): An instance of the MedRecord class containing medical
data.
outcome_variable (MedRecordAttribute): The attribute in the edge that
contains the outcome variable.
reference (Literal["first", "last"], optional): The reference point for the
exposure time. Options include "first" and "last". If "first", the
function returns the earliest exposure edge. If "last", the function
returns the latest exposure edge. Defaults to "last".
Returns:
ContinuousReport: A dictionary containing the results of continuous
treatment effect estimators: average treatment effect, Cohen's d and
Hedges' g.
"""
average_treatment_effect = (
self._treatment_effect.estimate.average_treatment_effect(
medrecord,
outcome_variable,
reference=reference,
)
)
cohens_d_value = self._treatment_effect.estimate.cohens_d(
medrecord,
outcome_variable,
reference=reference,
)
hedges_g_value = self._treatment_effect.estimate.hedges_g(
medrecord,
outcome_variable,
reference=reference,
)
return {
"average_treatment_effect": average_treatment_effect,
"cohens_d": cohens_d_value,
"hedges_g": hedges_g_value,
}